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Advances in motor vehicle safety, trauma care, combat body armor, and cancer treatment have
enhanced the life expectancy and functional expectations of patients with upper-extremity
amputations. Upper-extremity surgeons have multiple surgical options to optimize the poten-
tial of emerging prosthetic technologies for this diverse patient group. Targeted muscle rein-
nervation is an evolving technique that improves control of myoelectric prostheses and can
prevent or treat symptomatic neuromas. This review addresses current strategies for the care of
patients with amputations proximal to the wrist with an emphasis on recent advancements in
surgical techniques and prostheses. (J Hand Surg Am. 2018;43(7):657e667. Copyright� 2018
by the American Society for Surgery of the Hand. All rights reserved.)
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Key words Primary amputation, prosthetics, reinnervation, surgical reconstruction, upper
extremity.
INTRODUCTION
Major upper-extremity amputees account for only 8%
of the 1.5 million individuals living with limb loss.1

Upper-extremity amputation is an accepted treat-
ment option for acute trauma or sequelae of traumatic
injuries, chronic infection, bone or soft tissue tumors,
certain brachial plexus injuries, and complex regional
pain syndrome. Regardless of the underlying diag-
nosis, emphasis is placed on definitively treating the
underlying condition, achieving a stable, functional
extremity, and minimizing painful sequelae. Patients
and providers benefit from a multidisciplinary team
consisting of experienced upper-extremity surgeons,
skilled prosthetists and/or orthotists, physiatrists, pain
management physicians, and therapists.
SURGICAL RECONSTRUCTION
Preoperative considerations

Upper-extremity amputation should be considered a
reconstructive procedure rather than an ablative pro-
cedure, taking into account a number of consider-
ations of the host and limb (Table 1). Definitive
procedures require clean, well-vascularized wound
beds with adequate soft tissue coverage; complex
wounds or active infection necessitate a staged
approach. When amputations are performed (semi)
electively, preoperative nutritional status should be
optimized and patients should be evaluated by a
prosthetist before surgery when possible.

Primary amputation

The creation of a stable osseous and soft tissue en-
velope that will maximize function of a prosthesis
and minimize pain is the principal goal of primary
amputation. In contrast to weight-bearing and mobi-
lization considerations in the lower extremity, the
ability to interact with the environment is under-
scored for the upper extremity. Prosthetic fit and
function between amputation levels have been
assessed by few biomechanical studies or standard-
ized trials, but clinical experience has highlighted
several important considerations.2e4

Intuitively, the ability to optimally interact with the
environment is positively associated with preserva-
tion of limb length. The most proximal amputations
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(shoulder disarticulation or forequarter amputation)
require cumbersome prostheses, which necessitate
considerable energy expenditure. In our clinical
practice, we make every effort to salvage the elbow
and shoulder joints when feasible to enhance post-
amputation function. In short amputations through
long bones (as with high transradial or high trans-
humeral amputations), the function of the adjacent
(proximal) joint may be obviated. To enable pros-
thetic suspension, a minimum of 5 cm of bone distal
to a joint is needed to preserve the function of that
joint in a prosthesis.5 While a distal third forearm
amputation leaves the origin and insertion of the
pronator teres and supinator intact, patients rarely
exhibit functional rotation of the residual limb.

Successful lengthening of short upper extremity
residual limbs to improve prosthetic function has
been described in both children and adults6,7,a (Figs. 1,
2). Microsurgical free-tissue transfer (with free flaps or
fillet flaps from unreplantable limbs) can be employed
to preserve residual limb length, preserve joint func-
tion, and provide adequate soft tissue coverage.5,8

These procedures should not be undertaken lightly,
however, given the reported 38% complication rate.
Complications such as flap necrosis, vascular impair-
ment, and delayed union of a vascularized fibula flap
have been described.5 Free tissue transfer may also
prolong soft tissue healing or change the residual limb
shape, delaying prosthetic fitting and prolonging
rehabilitation. Personal preferences and patient char-
acteristics (particularly age, occupation, and medical
comorbidities) should be considered before free tissue
transfer using a shared decision-making strategy.

In contrast, disarticulations have their own draw-
backs and benefits. Disarticulations create long re-
sidual limbs that adapt poorly to many modern
prostheses and often require soft tissue augmentation
or support (myodesis or myoplasty) to cover bony
prominences and ensure a comfortable prosthetic fit.
An important advantage of disarticulations, however,
is improved suspension and rotational control of the
prosthesis as a result of preserved distal condyles and
intact muscle units. Diaphyseal humeral shortening,
performed in conjunction with elbow disarticulation,
can improve prosthetic fit and rotational control while
preserving adequate space for the prosthesis.9,10
ol. 43, July 2018



TABLE 1. Factors Influencing theDecision to Proceed
With Amputation and the Level of Amputation

Host factors

Concomitant injuries or illnesses

Preoperative functional status

Expectations

Limb factors

Level of injury or disease

Type of injury or disease

Presence of contamination or infection

Soft tissue coverage

Vascular supply

Neurologic status
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Much the same way that a long-arm cast is difficult
to keep on a child without a good supracondylar
mold, prosthetic suspension can be particularly
challenging in short residual limbs without a distal
condylar flare. The benefit of retained humeral con-
dyles can be simulated in long transhumeral ampu-
tees with an angulation osteotomy (humeral flexion
osteotomy).11,12 In 1974, Marquardt and Neff11

described 3 osteotomy techniques and outlined the
advantages of these procedures, including improved
functional shoulder rotation, augmented soft tissue
coverage of the distal limb (through distal skin trac-
tion), and improved prosthetic stability. Neusel and
colleagues observed that more than one-third of
angulation osteotomies in skeletally immature pa-
tients straightened over time; however, loss of
angulation occurred in none of the adult patients
undergoing the procedure.12 An angulation osteot-
omy may obviate the need for a shoulder harness to
suspend a myoelectric arm and markedly improves
rotational control of the arm (Fig. 3).

There are numerous other strategies for optimizing
limb length and orientation, upper-extremity motion,
and prosthetic fit (Table 2). To optimize limb length,
soft tissue envelope, and functional outcomes, it is
important that surgeons understand the technical
specifications and requirements for current prosthe-
ses.4 Regardless of amputation level, secondary pro-
cedures to address sequelae (wound complications,
infection, bony overgrowth, elbow flexion contrac-
ture, or painful neuromas) are common.

Targeted muscle reinnervation

Targeted muscle reinnervation (TMR), the transfer
of functioning nerves that have lost their operational
target to intact proximal muscles that serve as
biologic amplifiers,13 has gained considerable
J Hand Surg Am. r V
momentum in tandem with advances in myoelectric
prostheses. The “switch innervation” of a functioning
nerve to a new muscle target creates a novel electric
signal detectable by the myoelectric prosthesis and
confers additional degrees of active motion. Several
case reports and small series have described positive
outcomes with TMR, but further work is needed to
maximize the potential of this novel therapy.14e19

Targeted muscle reinnervation can enhance pros-
thetic function in patients with existing amputations,
maximize the potential for prosthetic use in managing
acute amputations,15 and prevent or treat painful
neuromas.20,21 Acute TMR avoids a secondary sur-
gery, diminishes the risk of painful neuromas, and
accelerates achievement of maximal control and
function of myoelectric prostheses. Targeted muscle
reinnervation is contraindicated in patients with
ipsilateral brachial plexopathy, major medical
comorbidities, or anticipated prosthetic noncompli-
ance in the absence of painful neuromas.

Although general TMR techniques have been
described, the pattern of nerve transfer is non-
prescriptive and depends on the amputation level
(glenohumeral, transhumeral, and transradial amputa-
tions), length and function of local peripheral (donor)
nerves, and presence or function of remaining muscle
targets.13,22,23 In transhumeral amputees, only the bi-
ceps and triceps muscles are able to create meaningful
signals for a myoelectric prosthesis. Separating the
heads of the biceps and triceps, recruiting the brachialis,
and “switch innervating” some of these muscles with
the terminal radial, median, and ulnar nerves with TMR
increases the number of signals available for use with a
modern myoelectric prosthesis. For example, the
medial biceps head can be denervated by cutting its
musculocutaneous nerve motor branches and then
reinnervated by coapting the median nerve to these
motor branches, allowing the medial head of the biceps
to contract intuitively when grasp is desired. The pre-
served lateral biceps head, still innervated by the
musculocutaneous nerve, contracts normally when
elbow flexion is desired. Similarly, one triceps head
can be “switch innervated” with the distal radial nerve
to control digital extension of a myoelectric prosthesis.
The remaining heads of the triceps, innervated by
radial nerve motor branches, are preserved for elbow
extension. When available, we typically reinnervate
the brachialis with the ulnar nerve.

Surgical technique

Targeted muscle reinnervation begins with identi-
fying and mobilizing donor nerves. While preserving
maximal length, end neuromas are excised and
ol. 43, July 2018



FIGURE 1: A The patient sustained bilateral high-tension electrocution injuries. B He underwent bilateral proximal forearm amputa-
tions. The surgeon was forward-thinking and retained the elbow joint even though the distal biceps was severely damaged and skin
grafting was necessary directly over the ulna and radius bone stumps. C, D Skin expansion enabled pliable, thin, and durable soft tissue
coverage over the distal amputation stump on each side. E, F In yet another stage, tissue expanders were placed in the upper arm. G In
this way, sufficient space was created to transfer a functional latissimus dorsi pedicle muscle transfer. H The patient became a successful
prosthesis wearer. (Clinical case courtesy of David Netscher, MD.)

FIGURE 2: A A teenage boy sustained a traumatic high-transhumeral amputation. Bone was lengthened by distraction. B The distal end
of the bone was in danger of becoming exposed through the skin. C, D The pectoralis major musculocutaneous pedicle flap provided soft
tissue coverage to the distal amputation stump. (Clinical case courtesy of David Netscher, MD.)
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fascicles are trimmed until axoplasmic sprouting of
nerve fascicles is noted. Target muscles are then
identified and the separate heads of the biceps and
triceps are isolated. Next, the target muscles’ native
J Hand Surg Am. r V
motor nerves are identified and transected roughly 1
cm proximal to the neuromuscular junction. The
stump of the target muscle’s native motor branch is
buried in muscle away from its original target to
ol. 43, July 2018



FIGURE 3: Humeral flexion osteotomy to improve prosthetic suspension and functional upper-extremity motion. A Radiograph of long-
transhumeral amputation. B Intraoperative photo of a humeral flexion osteotomy performed through a posterior approach in the same
setting as targeted muscle reinnervation. C Postoperative radiograph after humeral flexion osteotomy. D Clinical photo of the residual
limb after humeral flexion osteotomy.

TABLE 2. Strategies for Optimizing Limb Length and Orientation, Prosthetic Suspension, and Prosthetic
Rotational Control

Limb-lengthening procedures Lengthens a short residual limb to improve prosthetic suspension or fit

Microvascular free tissue transfer (eg, free flap,
fillet flap, vascularized free fibula graft)

Improves soft tissue coverage
Vascularized bone transfer: may lengthen a short residual limb

Shortening osteotomy Shortens a disarticulation or long residual limb
Improves prosthetic suspension and rotational control when condyles
are retained

Can improve soft tissue coverage
May reduce the risk of heterotopic ossification when performed away
from the zone of injury

Humeral flexion osteotomy Simulates a condylar structure to improve prosthetic suspension
Improves functional shoulder motion
May improve distal soft tissue coverage
May shorten a disarticulation or long residual limb

UPPER-EXTREMITY AMPUTATION 661
avoid the native nerve reinnervating the targeted
muscle.

The donor nerve is coapted to the target nerve
through a tension-free end-to-end repair, then
J Hand Surg Am. r V
augmented with an epineurium-to-epimysium repair
(Fig. 4). This is particularly advantageous if there is a
mismatch in the caliber of the donor and recipient
nerves.13 If a native motor stump is not available
ol. 43, July 2018



FIGURE 5: An adipofascial flap (dashed triangle) separates the
medial and lateral biceps (Med. Biceps and Lat. Biceps, respec-
tively) after switch innervation of the median nerve to the medial
biceps.

FIGURE 4: An epineurium-to-epimysium repair can be used to
augment a direct nerve-to-nerve transfer during TMR surgery.
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owing to damage or avulsion, the donor nerve end
can be sutured directly into an acutely injured
denervated muscle.

One challenge with independent signal detection is
overlapping myoelectric signals produced by muscles
with different functions in close proximity to one
another, termed muscle cross-talk. For example, the
long and short heads of the biceps are next to each
other, but after nerve transfer they have separate in-
nervations. Surface electrodes may struggle to
distinguish the overlapping myoelectric signals pro-
duced by the 2 individual muscles. Cross-talk can be
minimized by placing pedicled adipofascial flaps
between 2 muscles, effectively insulating myoelectric
signals in their respective compartments (Fig. 5).
Before closure, subcutaneous adipose tissue should
be focally thinned to reduce the distance and inter-
ference between the skin and targeted muscles.
Targeted muscle reinnervation for management of painful
neuromas

Approximately one-quarter of upper-extremity am-
putees struggle with painful neuromas, which impede
postoperative rehabilitation and long-term prosthetic
use.24,25 Major peripheral nerves are often managed
by traction neurectomy at the time of primary
amputation. Unfortunately, painful neuromas may
develop as a result of disorganized fibroblast and
Schwann cell proliferation. Several prevention and
treatment techniques have been described, including
burial of the nerve ending in muscle or bone and,
more recently, the use of TMR. With TMR, end-to-
end coaptation of lacerated nerves to target muscle
motor branches encourages organized nerve healing,
J Hand Surg Am. r V
as demonstrated in animal models of neuroma
formation after TMR.26

Souza and colleagues20 reported that 14 of 15
patients with preexisting neuroma pain experienced
the complete resolution of symptoms after TMR for
improved prosthetic control, whereas none of the 26
total patients included in the study group developed
postoperative neuroma pain. Pet and colleagues21

treated 23 patients with upper-extremity amputa-
tions and symptomatic neuromas with TMR and re-
ported an 87% decrease in neuroma pain. Likewise,
in 12 amputees treated with TMR for neuroma pre-
vention at the time of primary amputation, 92% were
pain-free at a mean of 22 months after surgery. No
neuromas have been reported after TMR surgery.

Restoring sensation

Establishing bidirectional control (motor function and
tactile feedback) of the prosthesis and residual limb
represents the crux of functional prosthesis use.
Conventional prostheses do not reproduce pain,
sensation, or proprioception; thus, prosthetic users
rely on sensation from the residual limb, in addition
to visual and environmental cues. Restoring sensation
is important for integrating environmental stimuli,
providing intuitive prosthetic function, and inte-
grating the prosthesis into patient self-perception.27

Analogous to TMR, targeted sensory reinnervation
creates new neural pathways through the transfer of
transected peripheral sensory nerves to denervated
skin on the upper arm or chest wall. Sensors on the
prosthesis can transmit stimuli to the corresponding
reinnervated skin to produce tactile feedback. For
example, sensory fibers of the transected median
nerve are used to reinnervate a more proximal, intact
ol. 43, July 2018



UPPER-EXTREMITY AMPUTATION 663
cutaneous nerve. Force applied to sensors on the
volar aspect of the prosthetic thumb, index, and
middle fingers can be detected and transmitted to a
stimulator over the now median innervated skin. The
stimulator applies force to the reinnervated skin,
creating an afferent signal to the median nerve,
sensed as varying degrees of light touch, pain, tem-
perature, and proprioception,28,29 although these
sensory signals may degrade over time.30 Early
studies of cortical pathways demonstrate neuro-
plasticity associated with sensory reinnervation.31

Several nascent engineering and clinical
studies have demonstrated that implantable haptic
technology (epineural, interneural, and intraneural
electrodes) can provide touch, pressure, shear, and
even temperature sensation.32,b

Electrode cuffs or grids placed around, on, or within
peripheral sensory nerves can provide both stimula-
tion and real-time feedback. In the lab, 2 prosthetic
users with implanted myoelectrodes could perceive
diverse sensory stimuli in the appropriate peripheral
nerve distribution under experimental conditions.33

Kim and Colgate34 showed that these devices could
improve grip force control in early trials.

The Defense Advanced Research Program’s Hand
Proprioception and Touch Interfaces program also
seeks to create prostheses with sensory feedback.
In this strategy, force sensors are applied to the pros-
thetic fingertips, generating signals that are transmitted
to native residual nerves through surgically implanted
nerve cuffs (Fig. 6). Early unpublished results
indicate that the use of this technology improves
dexterity and fine motor control of the myoelectric
prosthesis without the need for visual feedback.

ADVANCES IN PROSTHETICS
The complicated movements, dexterity, and
functional capacity of the human hand have not yet
been replicated with prostheses. Despite recent
advances in prosthetic design, the functional gap be-
tween the natural hand and prosthetic options
remains greater than the ability of prostheses to mirror
the weight-bearing functional capacity of the lower
limbs. Prosthetic users often cite limited dexterity as
the primary reason for abandoning the prosthesis.
There are advantages and disadvantages between
classes of upper-extremity prostheses (Table 3).

Pattern recognition myoelectric prostheses

Conventional myoelectric prostheses (so-called direct-
control prostheses) translate EMG signals from an
agonisteantagonist muscle pair into actions in a single
plane. For example, EMG signals from the biceps and
J Hand Surg Am. r V
triceps in a transhumeral amputee allow elbow flexion
and extension, respectively. Direct-control systems
interpret and act upon the amplitude of EMG signals
obtained from their muscle targets. Although these
systems have evolved to allow a second degree of
freedom (eg, hand open and closed) after a mode
switch signaled by either a mechanical switch or a
specific muscle co-contraction, their function is usu-
ally limited to 2 degrees of freedom and users report
that the obligate mode switch is not intuitive.

In contrast, myoelectric prostheses equipped
with pattern recognition technology initiate limb
movement in response to a reproducible pattern of
EMG signals produced by muscle contraction.35

Early work by Hudgins’ group35 revealed that
elbow and upper-arm motion in 2 planes (flexion-
extension and rotation) conferred reproducible EMG
signal patterns among transhumeral amputees. Ad-
vances in sensor technology and computer software
have created systems capable of sensing subtle user-
specific EMG patterns and summarily retraining the
software to accommodate stump-volume fluctuation,
the position of the residual limb within the socket,
and socket fit. Whereas TMR maximizes degrees of
freedom in both types of myoelectric prosthesis, it is
particularly advantageous in association with pattern
recognition prostheses.16e18

Physiological factors (such as muscle fatigue,
compromised soft tissue envelope, and sweating), a
change in limb position, and motion artifact may
degrade the number or quality of EMG signals
interpreted by surface electrodes. Technological
advances in implantable intramuscular or intra-
neural EMG sensors may improve the number and
quality of myoelectric signals available for inter-
pretation.33,36 Pattern recognition remains limited
to sequential control; thus, tasks requiring complex
movements must be performed in stepwise fashion
by individual simple movements. For example,
opening a door requires shoulder flexion and elbow
extension to reach for the door, followed by fore-
arm pronation and digital extension to touch the
doorknob. Grasping and turning the doorknob re-
quires digital flexion and forearm supination.
Pattern recognition enables each of these individual
simple movements to be performed sequentially.37

Emerging software may have predictive and adap-
tive capabilities, closing the gap between current
technology and intuitive prosthetic function.

Osseointegration

Osseointegrated (OI) implants have allowed bone
anchorage of external prostheses among transhumeral
ol. 43, July 2018



TABLE 3. Classes of Upper-Extremity Prostheses

Type Mechanism Advantage Disadvantage

Cosmetic Socket attaches to residual limb Most cosmetic No mechanical function is conferred by
prosthesis

Body-powered Shoulder motion is captured with a
harness and transferred through a
cable to operate a distal joint

Inexpensive
Highly functional
for basic tasks

Only one joint can be operated at a time
Heavy and unwieldy; can be physically
demanding

Myoelectric Electrical signals produced by muscle
contraction are captured by surface
electrodes and used to operate a
motorized arm

Provides a strong grip
TMR: increases potential
degrees of freedom

Only one function can be performed at a
time

Heavy
Control is not intuitive; may require mode
switch to increase degrees of freedom

Signal quality is adversely affected by poor
socket fit and cross-talk (EMG noise
from adjacent muscles that dilutes signal
quality)

FIGURE 6: Neurocutaneous electrodes were surgically implanted around the median and ulnar nerves. Force sensors applied to
prosthetic fingertips generate signals that are transmitted to native residual nerves through the surgically implanted nerve cuffs. The
external circuitry connecting the prosthesis to the electrodes exits inferior to the deltoid.
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amputees in Europe for 2 decades, but they are not
currently approved by the United States Food and
Drug Administration.38 An intramedullary fixture and
transcutaneous titanium abutment are surgically
introduced to the residual limb in staged fashion.
Because these prostheses attach directly to the end-
bearing OI implant, osseointegration eliminates
many of the problems associated with
traditional socket prostheses, including pain and soft
tissue injury related to sweating, chafing, and poor
prosthetic fit. It also confers a mechanical advantage
by improving prosthetic suspension and rotational
control relative to traditional socket prostheses and
J Hand Surg Am. r V
provides limited osseoperception. Potential for in-
fectious complications and longevity remain major
arguments against transcutaneous implants, however.
Although colonization at the implanteskin interface
is common, it does not affect prosthesis use in most
patients.39 In a cohort of 18 patients with trans-
humeral amputations, Tsikandylakis and colleagues40

reported 80% cumulative implant survival at 5 years
after implantation; however, there were 43 adverse
events, including superficial (15 events in 5 patients)
and deep (1 event) infections, skin reactions at the
skin penetration site (8 patients), incomplete fractures
during fixture placement (8 patients), and phantom
ol. 43, July 2018
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limb pain (3 patients). Of the 3 patients who experi-
enced implant failure, 2 were revised for loosening;
both had positive intraoperative cultures and were
treated with staged revision surgery. Taken together,
these data suggest that OI prostheses may be an
acceptable alternative to conventional socket pros-
theses in select patients.

More recently, OI condylar implants were intro-
duced to address restricted shoulder motion, mini-
mize skin irritation, and improve prosthetic fit while
minimizing the infection risk associated with OI
implants. Witso and colleagues41 first devised a
cemented T-shaped subcutaneous implant and
reported successful integration and use in 2 of 3
patients with transhumeral amputations. To address
some of the issues associated with its earlier coun-
terpart, Salminger et al42 created a butterfly-shaped
titanium subcutaneous implant-supported attach-
ment, the SISA. This condylar implant can be gras-
ped by a customized, 3-dimensionally printed socket
designed to improve ease of prosthetic application
and distribute pressure more uniformly for a
comfortable fit. Although promising clinical results
have been reported, including minimal restriction in
shoulder motion, 9.5 hours average wearing time, and
no soft tissue wounds in 2 transhumeral amputees,
the authors caution that subcutaneous implants
should be reserved for patients with adequate healthy
soft tissue at the end of the residual limb. In patients
with adequate residual limb length but no condylar
structures in whom OI is not an option, humeral
flexion osteotomy can improve functional shoulder
motion and prosthetic fit in transhumeral
amputees.11,12

A potential benefit of OI prostheses is improved
detection of sensory signals from the local environ-
ment, a process known as osseoperception, which
relies on unmyelinated nerve fibers in bone and
sensory fibers in adjacent soft tissues to transmit
sensory information to the central nervous system.
Functional magnetic resonance imaging has shown
activation of the somatosensory cortex in response to
stimulation of osseointegrated prostheses.43 In a
recent study of 34 patients with transfemoral ampu-
tations, Haggstrom et al44 reported that patients with
OI prostheses had improved ability to detect vibratory
stimuli compared to their peers with suspended
prostheses. Furthermore, the detection threshold for
certain frequencies decreased over time compared
with preoperative values, which raised the question of
whether osseoperception may be a plastic process that
can improve over time.
J Hand Surg Am. r V
CHALLENGES AND FUTURE DIRECTIONS
Targeted muscle reinnervation surgery has dramat-
ically improved control of myoelectric prostheses
and simultaneously addressed the challenge of
painful neuromas in patients with upper-extremity
amputations. Further technical modifications
coupled with technological advances will likely
result in more sophisticated prosthetic control and
function. Investigators seek increased degrees of
freedom through a single joint, including wrist
flexion and extension and radioulnar deviation;
coordinated control of multiple joints; co-
completion of simultaneous movements, known as
muscle synergy; and improved hand function
through pinch, grasp, opposition, and ulnar grip.15

These advances require concurrent innovation in
both the surgical and prosthetic realms. Surgeons
continue to investigate novel TMR targets that
increase the number and quality of myoelectric
signals available to power a prosthesis. Corre-
sponding advances in prosthetics technology such
as implanted intramuscular or intraneural myoelec-
tric sensors (as opposed to surface electrodes) offer
a robust, reliable means of obtaining independent
electromyographic signals from muscles in close
proximity.33,36 Enhanced myoelectric prostheses
ultimately will have additional degrees of freedom
with independent and intuitive prosthetic control, in
part by increasing the number of available muscle
targets. In addition, patients with severe soft tissue
injury such as scars and burns may have
difficulty powering a myoelectric prosthesis using
current sensor technology. Future work is needed to
improve sensor density and precision and to identify
strategies that minimize cross-talk.

Major upper-extremity amputation has a pro-
found effect on an individual’s productivity and
ability to interact meaningfully with his or her
environment. Although numerous strategies exist to
optimize limb length, orientation, and motion,
complications and secondary procedures are com-
mon. Targeted muscle reinnervation is an emerging
technique that improves myoelectric prosthesis use
while preventing and treating painful neuromas.
Targeted sensory innervation and prosthetic in-
novations such as osseointegration are promising
developments that may improve prosthetic user
comfort and function. Despite important advances
in surgical techniques and prostheses, maximizing
prosthetic function and use remains an exciting
objective for upper-extremity surgeons, prosthetists,
and patients.
ol. 43, July 2018
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Surgery of the Hand annual meeting, September 7 through 9, 2017,
San Francisco, CA. Also available on Hand-e: http://www.assh.org/
hand-e.

c. Limb amputations and prosthetics [Video C]. Lifchez SD. Presented at
the Comprehensive Review in Hand Surgery Course, July 7 through 9,
2017, Chicago, IL. Also available on Hand-e: http://www.assh.org/
hand-e.

d. Bilateral electric multi-articulating hands [Video D]. Atkins DJ. Pre-
sented at the American Society for Surgery of the Hand annual
meeting, September 29 through October 1, 2016, Austin, TX. Also
available on Hand-e: http://www.assh.org/hand-e.
JOURNAL CME QUESTIONS
Current Concepts in Upper-Extremity
Amputation

1. What is the minimum length of residual bone
in a major upper extremity amputation that is
needed to preserve function of the adjacent
proximal joint (elbow or shoulder) while wearing a
prosthesis?

a. 3 cm

b. 5 cm

c. 7 cm

d. 9 cm

e. 12 cm
2. An angulation osteotomy for a patient with a
transhumeral amputation is most likely to confer
which of the following advantages?

a. Improved shoulder rotation and prosthetic
suspension

b. Lengthens a short residual limb

c. Reduction of heterotopic ossification at the next
proximal joint

d. Maintains a curvature and “hook” in the
skeletally immature patient

e. Reduces neuroma sensitivity
3. Detection of myoelectric signals following
targeted muscle reinnervation may be confounded
by muscle “cross-talk.” Which of the following
statements best describes this phenomenon?

a. Disorganized nerve regeneration characterized by
overgrowth of nerve fibers and Schwann cells

b. Electrode cuffs placed around or within
peripheral sensory nerves

c. Overlapping myoelectric signals produced by
muscles with different intended functions in close
proximity to each other

d. The transfer of functioning nerves that have lost
their operational target to intact proximal muscles
may be difficult to reintegrate

e. Osseoperception detects additional sensory signals
4. What is the process by which unmyelinated
nerve fibers in bone and sensory fibers in adjacent
soft tissues transmit information to the central
nervous system?

a. Advanced pattern recognition

b. Cross-talk

c. Osseo perception

d. Targeted sensory reinnervation

e. Haptic transmission
To take the online test and receive CME credit, go to http://www.jhandsurg.org/CME/home.
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